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Solutions

1. Let the friction force on the ball be F. Then F must cancel the
component of gravity in the tangential direction; thus F' = mgsin6.

The torque on the ball is 7 = Fr. Using F = mgsinf, we get
7 = mgrsinf. This torque must equal I«p, where « is the angu-
lar acceleration of the ball, which is related to the « of the cylinder by
ap = (R/r)a. Thus, 7 = Iy gives
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mgrsin@ = <gmr ) (7a> = =0 (1)

2. When the light bounces off the surface, its reflected angle is equal to
its incident angle. Therefore, we may use the method of images to
determine if a particular ray of light hits the receiver.

If we look at a two-dimensional cross-section of the cone, we see that
when the picture is repeatedly reflected across the edge of the cone,
the receiver turns into a full circle of radius r. The method of images
therefore tells us that in the original three-dimensional case, the given
receiver turns into a full sphere of radius 7, centered at the vertex of
the cone.

The given problem therefore reduces to the problem: What fraction of
light emitted from a source falls on a sphere of radius r centered at a
point a distance d from the source? (Note that the given vertex angle
0 is irrelevant.)
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From the figure, we see that we need to find the fractional solid angle
subtended by a cone with half-angle /3, where sin § = r/d. Looking at
a sphere of radius R, the area of the spherical “cap” subtended by this
cone can be found by slicing the cap into circular bands. If a describes
the angle away from the top of the cap, then the corresponding circle
has radius 27 (R sin a), so the resulting integral for the area of the cap
is
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The fraction of the total area is therefore

A 1 1 22
Fraction = R 5(1 —cosf) = 3 (1 - %) . (3)

(If r > d, then the fraction equals 1, of course.)

. The normal force from the plane is N = mg cos 6, so the friction force
is uN = mgsinf. This force acts in the direction opposite to the
motion. There is also the gravitational force of mg sin # pointing down
the plane.



The magnitudes of these two forces are equal, so the acceleration along
the direction of motion equals the negative of the acceleration in the
direction down the plane. Therefore, in a small increment of time, the
speed that the block loses along its direction of motion exactly equals
the speed that it gains in the direction down the plane. Letting v be
the speed of the block, and letting v, be the component of the speed
in the direction down the plane, we therefore have

v+ vy =C, (4)

where C' is a constant. C'is given by its initial value, whichis V40 =V
(where V' is the initial speed of the block). The final value of C' is
Vi 4+ V; = 2V (where V; is the final speed of the block), since the
block is essentially moving straight down the plane after a very long
time. Therefore,

2Vf =V — Vf = V/Q. (5)

. Start with the first law of thermodynamics (energy conservation),
dQ =dU — dW (6)

where d(@) is an infinitesimal amount of heat added to the system, dU
is the change in internal energy, and dW is an infinitesimal amount of
mechanical work done on the system.

Consider going around any closed loop in the state of the system. By
‘state’ we mean pressure p, volume V and temperature 7. In our
system, knowing any 2 of these determines the third; for instance T
is a function of (p,V) which is given by the ideal gas law. U is a
function of the state alone, so adding up the dU changes around the
closed loop must give zero. Therefore for a single traversal of the loop,
AQ = —AW. Mechanical work done is caused by changes in volume,

dW = —pdV, (7)

so the integral of dW around a closed loop is just the negative of the
area enclosed on the (p, V) plane (for a clockwise loop, as we have).
For each traversal of the loop, therefore

Qin — Qout = AQ = —AW = area enclosed in (p,V) = ipoVp. (8)



We have given the constants P and V given in the problem the more
convenient symbols pg and V.

We have found the numerator of the fraction giving the efficiency (if
you used the methods below to find this numerator, that was fine to0o).
Now all that remains is the denominator, Qiy.

We’re given the internal energy U = 2nkT, from which you have to
realise that n is the number of particles not the number of moles of
particles. This is obvious since m is multiplied by k&, Boltzmann’s
constant, rather than R, the gas constant. We have an ideal gas,

pV = NRT or equivalently, pV = nkT, (9)

where N is the number of moles, and n the number of particles (note
this is swapped from the usual notation for n and N). The second
form is the useful one for us, since from it follows that internal energy
can be written

U =3pV. (10)
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Now for any segment of the path we can find AU, without explicit
reference to 7.
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We need to consider the complete path, and find the ‘turning points’
where the flow of heat (sign of d@) changes direction (tp; and tps in
the right-hand figure). @i, is then the integral between these turning
points along one route of the path (and Qo is the same integral back
along the other route). We need to find how @) changes in each side of
the triangle, labeled A,B and C (see left-hand figure):



Leg A: no volume change, so AW = 0. Due to a doubling of pressure,
U has changed from 2pgVp to twice that, so AQ = AU — AW =
+32poVo.

Leg C: no pressure change, so the work integral AW = — [pdV
is simply —p AV = poVy. U goes from its value at the end of leg
A back to its original value, so AU = —3pyVj. Together these give
AQ = —3poVp. Checking the signs here was important: the effects
combine to give increased heat output.

From the above consideration of d() in legs A and C, it is clear that
one turning point is tp; as shown.

Leg B: This is not an isothermal change (which would correspond to
a hyperbola defined by pV = const, and would imply that d@Q > 0
everywhere along the leg). It is also tempting to assume that since
AU = 0 along this leg (same start and end T'), one can find AW and
be done with the problem. Not so! Because T' (hence U) is dropping
at the end of the leg while W is also dropping (work is being done by
the system), there is the possibility that d@ changes sign along the
leg, making tps happen some fraction of the way along the leg.

We parametrize the leg by a unitless number z = [1, 2], giving p(z) =
po(3 —z) and V(z) = Vpz. Therefore

v
dQ = dU — dW = 2(pdV +V dP) + pdV = ’%(15 —8a)dz, (11)

where the derivatives dp = —podz and dV = Vydz were used. Clearly
dQ changes sign when 15 — 8z = 0, that is, at x = 15/8. Note that
this turning point is not simply at z = 3/2 (half-way through the leg),
when T reaches its maximum. The location of this turning point can

also be found by considering the criterion for adiabaticity (dQ = 0),
namely dp/dV = —yp/V = =3p/V.

Splitting the leg into parts B’ and B” at this turning point as shown,
we need the heat input in leg B’ only,

z=15/8 Vo [r=15/8
AQ = / dQ = oo (15 — 8z) da. (12)
=1 2 =1
The z-integral gives [15z — 4:52]}5/ 8 = 22 after a little simplification,

so AQ = +§—3p0V0.



Adding AQ from legs A and B gives Qin = (2 + 33)poVo = LpoV0, an
admittedly slightly messy fraction.

Finally the efficiency is

in — 1poVo 16
e Qin = Qo _ opoVo 16 00 o about 16.5% (13)

Qin YpoVo 97

Note that this is very close to the incorrect answer of 1/6 obtained if
tps is assumed to be at the lower right vertex.

. At time ¢, the movable end of the band is a distance ¢(t) = L + V't
from the wall. Let the ant’s distance from the wall be r(t).

Consider the fraction of the ant’s position along the band, F(t) =
r(t)/¢(t). The given question is equivalent to: For what value of ¢
does the fraction, F(t), become zero (if at all)? Let us see how F()
changes with time.

After an infinitesimal time, dt, the ant’s position, r, increases by
(r/€)V dt due to the stretching, and decreases by u dt due to the crawl-
ing. Therefore,

r+ (r/O)Vdt —udt

F =
(t+di) (+ Vit
T udt
= - — — . 14
¢ 14+ Vdt (14)
To first order in dt, this yields
F(t+dt)=F(t) — %dt. (15)

In other words, F'(t) decreases due to the fact that in a time dt the
ant crawls a distance wdt relative to the band, which has a length
approximately £(t). Eq. (15) gives

dF(t) u

LA 16
dt 1 (16)
Using /(t) = L + Vt and integrating eq. (16), we obtain
u V
F(t)=1- ¢ n <1 + Zt) : (17)

where the constant of integration has been chosen to satisfy F(0) = 1.



We now note that for any positive value for u, we can make F(t) =0

by choosing
L

— Z (Vv —
=3 (e 1). (18)
For very large V/u, the time it takes the ant to reach the wall becomes
exponentially large, but it does indeed reach it in a finite time.

For very small V/u, (18) reduces to ¢t =~ L/u (using e* ~ 1 + z), as it
should.

. A few simple examples suggest that the answer to the problem is
(N —1)Q. Let’s prove this in general. (We will use a superposition
argument.)

Consider two points, A and B, that are connected by one of the 12
resistors. If we put a current I in at A, and take a current I out at B,
then the effective resistance between A and B is V/I, where V is the
potential difference between the two points.

The situation where a current I goes in at A and out at B can be
considered as the superposition of two setups: (1) Put a current %I
in at A and take a current %I out at each of the other N — 1 points,
and (2) Take a current 211 out at B and put a current +1 in at
each of the other N — 1 points.

In the first setup, let the current going from A to B be [ 2‘ g In
the second setup, let the current going from A to B be I E 5 (The
superscript here denotes the point at which the current of %I enters
or leaves.) Then in the combined setup, the current going from A to
BisI4{ g+ 1% 5. Since this current passes along a 1 resistor, the
voltage difference between A and B is V = (I4{_, 5 +I5,5)(1Q). The
effective resistance between A and B is therefore

Rap = (LiLp +I5,5)(1Q)/1. (19)

We must now add up these R4p contributions from all of the resistors.
Let the desired sum be S. Then

A
S= (Ii,p+1I5,p)1Q)/I, (20)
A,B
where the sum runs over all pairs of points A, B that are connected
by a resistor. By reversing the roles of A and B, we may also write

S= Z(Ig»A"i_IgﬂA)(lQ)/I' (21)
A,B



Adding the two previous equations gives

25 = (Idp + 15,01 /1+ Y (I 4+ I, p)1Q)/I. (22)
A,B A,B

The first sum is simply the sum of the N currents entering the N
points in all of the IV setups of type “1” above. Since a current of %I
enters each point (by construction), the first sum equals (N —1)(1).
Likewise, the second sum deals with the N currents leaving the NV
points in all of the IV setups of type “2” above, so it also equals
(N —1)(19Q). Eq. (22) therefore gives

S=(N-1)Q. (23)



