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Solutions

1. (a) Let the sphere have radius R and charge ). Then the potential at the surface is
V(R) = =. 1
(R) =% (1)

The magnitude of the field at radius r inside the sphere is (from Gauss’ law)

Q(r’/R%) _@r
Integrating this from » = R down to r = 0 gives a change in potential of AV = Q/2R.
Therefore, the potential at the center is

3
v =24 2% @
and the desired ratio is
ViR 2 W
V(0) 3

(b) Let p be the charge density of the cube. Let V" be the potential at the corner of
a cube of side £. Let V" be the potential at the center of a cube of side /. By
dimensional analysis,

Vi o = pt? (5)
Therefore,!
Vi = vy (6
But by superposition, we have
WCQH — 8‘/’[(2/0;" (7)

because the center of the larger cube lies at a corner of the eight smaller cubes of which

it is made. Therefore,
cor

V'ZCOI‘ £/2 1
cen cor 9" (8)
Vi 8Viy 2
2. The contact point on the ground does not look blurred, because it is instantaneously at
rest. However, although this is the only point on the wheel that is at rest, there will be
other locations in the picture where the spokes do not appear blurred.

The characteristic of a point in the picture where a spoke does not appear blurred is that
the point lies on the spoke during the entire duration of the camera’s exposure. (The point

'In other words, imagine expanding a cube with side £/2 to one with side £. If we consider
corresponding pieces of the two cubes, then the larger piece has 2> = 8 times the charge of

the smaller. But corresponding distances are twice as big in the large cube as in the small
cor

cube. Therefore, the larger piece contributes 8/2 = 4 times as much to V" as the smaller piece

contributes to V,7;.



need not, however, correspond to the same point on the spoke.) At a certain time, consider
a spoke in the lower half of the wheel. A short time later, the spoke will have moved, but
it will intersect its original position. The spoke will not appear blurred at this intersection
point. We must therefore find the locus of these intersections.

Let R be the radius of the wheel. Consider a spoke that makes an angle 6 with the vertical.
Let the wheel roll through an angle df; then the center moves a distance R df. The spoke’s
motion is a combination of a translation through a distance R d#, and a rotation through
an angle df (about its top end).

Let r be the radial position of the intersection of the initial and final positions of the spoke.
Then from the figure we have
(Rdf)cos@ =rdb. 9)

Therefore, r = Rcosf. This is easily seen to describe a circle whose diameter is the (lower)
vertical radius of the wheel.

. First solution (slick method):

Let 8 be the angle the force vector makes with the tangential direction. Let F' be the
maximum possible magnitude of the force of friction (it happens to be F' = umg, but we
won’t need this). The minimum-distance scenario is obtained when F'sin 3 accounts for the
radial acceleration, and the remaining F cos # accounts for the tangential acceleration. In

other words,

’n’L’U2

Fsing = & and F cos 8 = mo. (10)

Taking the derivative of the first equation gives F' cos BB = 2muv /R. Dividing this by the
second equation gives § = 2v/ R. But v = Rf, where 0 is the angular distance traveled
around the circle. Therefore, § = 26, and integration gives

B=20. (11)

When the maximum speed is achieved, the value of 4 must be 7/2. This value corresponds

to

o=7- (12)

Hence, the motorcycle must travel a distance mR/4, or one-eighth of the way around the
circle.

Second solution (straightforward method):

In the minimum-distance scenario, the magnitude of the total force must be its maximum
possible value, namely umg (the exact form of this is not important). Since the radial force
is F, = mv?/R, the tangential F = ma equation is

F = \/ (mag)? — (%) =m. (13)

Multiplying through by dz, and then rewriting dz/dt as v (where dz = Rdf is the distance
along the circle), we obtain?

v dv

dr = = (14)
(n9)> — (%)

2This is simply the work-energy result, because the work is F;dz, and the change in kinetic
energy is d(mwv?/2) = mw dv.




4.

Letting z = v2/ugR gives

Rdz
dr = ———. 15
2v/1 — 22 (15)

The maximum allowable speed, V, is obtained from umg = mV?/R. Therefore, V2 = ugR,
and the corresponding value of z is 1. The desired distance, X, is then

X L' Rdz
P AP
0 0 2v/1—22
R w/2
= —/ do (letting z = sin @)
2 Jo
TR

= - (16)

(a) The relative speed of the fox and rabbit, along the line connecting them, is always

vrel = U — v cos a. Therefore, the total time needed to decrease their separation from
¢ to zero is

T:m. (17)

This is valid unless o = 0, in which case the fox never catches the rabbit.
The location of their meeting is a little trickier to obtain. We offer two methods.
First solution (slick method):

Imagine that the rabbit chases another rabbit, which chases another rabbit, etc. Each
animal runs at an angle « relative to the direction directly away from the animal
chasing it. The initial positions of all the animals lie on a circle, which is easily seen
to have radius /2

R = # . (18)

sin(a/2)

The center of the circle is the point, P, which is the vertex of the isosceles triangle with
vertex angle a, and with the initial fox and rabbit positions as the other two vertices.

By symmetry, the positions of the animals at all times must lie on a circle with center
P. Therefore, P is the desired point where they meet. The hypothetical animals
simply spiral in to P.

REMARK: An equivalent solution is the following. At all times, the rabbit’s velocity vector is
obtained by rotating the fox’s velocity vector by a. In integrated form, the previous sentence
says that the rabbit’s net displacement vector is obtained by rotating the fox’s net displacement
vector by a. The meeting point, P, is therefore the vertex of the above-mentioned isosceles
triangle.

Second solution (messier method):

This solution is a little messy, and not too enlightening, so we won’t include every
detail.

The speed of the rabbit in the direction orthogonal to the line connecting the two
animals is vsina. Therefore, during a time dt, the direction of the fox’s motion
changes by an angle df = vsinadt/¢;, where ¢, is the separation at time ¢. Hence, the
change in the fox’s velocity has magnitude |dv| = vdf = v(vsinadt/l;). The vector
dv is orthogonal to v; therefore, to get the z-component of dv, we need to multiply



|dv| by vy/v. Similar reasoning holds for the y-component of dv, so we arrive at the
two equations,

. 'U/Uy Sin &
Vg = )
b
. VU, Sin o
Uy = 7 . (19)
t

Now, we know that ¢, = (¢ — v(1 — cos a)t). Multiplying the above two equations by
¢;, and integrating from the initial to final times (the left sides require integration by
parts), yields

vz 0l +v(l —cosa)X = wvsinal,

vyl +v(l —cosa)Y = —wsinaX, (20)
where (X,Y) is the total displacement vector, and (vg,0,vz,0) is the initial velocity

vector. Putting all the X and Y terms on the right sides, and squaring and adding
the equations, gives

2o? = (X2 +Y?)(v? sin® o + v%(1 — cos a)?). (21)

Therefore, the net displacement is

R=VX21Y?= ! _ 2 (22)

2(1 —cosa)  sin(a/2)

To find the exact location, we can, with out loss of generality, set v; o = 0, in which
case we find Y/X = (1 — cosa)/sina = tan(a/2). This agrees with the result of the
first solution.

First solution (slick method):

Let A(t) and B(t) be the positions of the fox and rabbit, respectively. Let C(t) be the
foot of the perpendicular dropped from A to the line of the rabbit’s path. Let oy be
the angle, as a function of time, at which the rabbit moves relative to the direction
directly away from the fox (so ap = «, and @ = 0).

The speed at which the distance AB decreases is equal to v — v cos ;. And the speed
at which the distance C'B increases is equal to v — v cos a;. Therefore, the sum of the
distances AB and C'B does not change. Initially, the sum is £ + £ cos . In the end, it
is 2d, where d is the desired eventual separation. Therefore,

/(1 + cos )

d=
2

(23)
Second solution (straightforward method):

Let a; be defined as in the first solution, and let #; be the separation at time ¢. The
speed of the rabbit in the direction orthogonal to the line connecting the two animals
is vsinay. The separation is 4, so the angle a; changes at a rate

v sin ay

b

oy =

(24)

And 4, changes at a rate ‘
ly = —v(l —cosay). (25)



Taking the quotient of the above two equations, and separating variables, gives

ét Oét(]. — COS Oét)

L 26
4y sin oy (26)

The right side may be rewritten as a; sina;/(1 + cos ay), and so integration gives
In(¢;) = —In(1 + cosay) + C, (27)

where C' is a constant of integration. Exponentiating gives ¢;(1 + cosay) = B. The
initial conditions demand that B = ¢5(1 + cos o) = ¢(1 + cos v). Therefore,

2(1 + cos @)
by =—~— """ 2
T (14 cosay) (28)

Setting ¢t = oo, and using ay = 0, gives the final result

2(1 + cos )

by = 5

(29)
REMARK: The solution of part b) is valid for all a except a=n. If a=n, the rabbit runs
directly towards fox and they will indeed meet halfway in time £/2v.

5. Let p be the mass density of the raindrop, and let A be the average mass density in space of
the water droplets. Let r(t), M (t), and v(t) be the radius, mass, and speed of the raindrop,
respectively.

The mass of the raindrop is M = (4/3)7r3p. Therefore,
M = dnrip = 3M L. (30)
T

Another expression for M is obtained by noting that the change in M is due to the acquisi-
tion of water droplets. The raindrop sweeps out volume at a rate given by its cross-sectional
area times its velocity. Therefore,

M = nr?u). (31)

The force of Mg on the droplet equals the rate of change of its momentum, namely dp/dt =
d(Mwv)/dt = Mv + Mv. Therefore,

Mg = Mv + Mb. (32)

We now have three equations involving the three unknowns, r, M, and v.

(Note: We cannot write down the naive conservation-of-energy equation, because mechan-
ical energy is not conserved. The collisions between the raindrop and the droplets are
completely inelastic. The raindrop will, in fact, heat up. See the remark at the end of the
solution.)

The goal is to find © for large t. We will do this by first finding # at large ¢. Eqs. (30) and
(31) give
4p . . 4p..

v=r = 0= (33)



Plugging eqs. (30) and (33) into eq. (32) gives

-\ (4 4
Mg = (3Mf> (—"f) +M (-”;«') . (34)
r A A
Therefore,
9N, 1942 4 dri, (35)
o)

Given that the raindrop falls with constant acceleration at large times, we may write 3
. . 1 5
7 & by, 7 = bgt, and r §bgt , (36)

for large t, where b is a numerical factor to be determined. Plugging eqs. (36) into eq. (35)

gives
1 1
(%) <§bgt2> = 12(bgt)? + 4 <§bgt2> bg. (37)

Therefore, b = \/28p. Hence, # = g\/28p, and eq. (33) gives the acceleration of the
raindrop at large t,

. _ g
=2 38
=1, (33)

independent of p and A.

REMARK: We can calculate how much mechanical energy is lost (and therefore how much the
raindrop heats up) as a function of the height fallen.

The fact that v is proportional to 7 (shown in eq. (33)) means that the volume swept out by the
raindrop is a cone. The center-of-mass of a cone is 1/4 of the way from the base to the apex.
Therefore, if M is the mass of the raindrop after it has fallen a height h, then the loss in mechanical
energy is

h 1
Eiost = MgZ - §MU2- (39)
Using v? = 2(g/7)h, this becomes
3
AFEiy = Eost = 55 Mgh, (40)

28

where AFE;, is the gain in internal thermal energy. The energy required to heat 1g of water by 1
degree is 1 calorie (= 4.18 Joules). Therefore, the energy required to heat 1 kg of water by 1 degree
is & 4200 J. In other words,

AFEin = 4200 M AT, (41)

where mks units are used, and 7' is measured in celsius. (We have assumed that the internal energy is
uniformly distributed throughout the raindrop.) Eqgs. (40) and (41) give the increase in temperature
as a function of h,

3
4200 AT = —gh. 42
00 55" (42)

How far must the raindrop fall before it starts to boil? If we assume that the water droplets’
temperature is near freezing, then the height through which the raindrop must fall to have AT =
100°C is found to be

h = 400 km. (43)

%We may justify the constant-acceleration statement in the following way. For large ¢, let r be
proportional to t*. Then the left side of eq. (35) goes like t*, while the right side goes like $2*72.
If these are to be equal, then we must have oo = 2. Hence, r  t°, and 7 is a constant (for large

).



We have, of course, idealized the problem. But needless to say, there is no need to worry about
getting burned by the rain.

A typical value for h is 10 km, which would raise the temperature by two or three degrees. This
effect, of course, is washed out by many other factors.

. Let 6(t) be the angle through which the spring moves. Let z(t) be the length of the
unwrapped part of the spring. Let v(¢) be the speed of the mass. And let k(t) be the spring
constant of the unwrapped part of the spring. (The manner in which k£ changes will be
derived below.)

Using the approximation ¢ < L, we may say that the mass undergoes approximate circular
motion. (This approximation will break down when x becomes of order a, but the time
during which this is true is negligible compared to the total time.) The instantaneous center
of the circle is the point where the spring touches the pole. F' = ma along the instantaneous

radial direction gives

mU2

= kx. (44)

T

Using this value of v, the frequency of the circular motion is given by

v k
%:5:\/; (45)

The spring constant, k(t), of the unwrapped part of the spring is inversely proportional to its
equilibrium length. (For example, if you cut a spring in half, the resulting springs have twice
the original spring constant). All equilibrium lengths in this problem are infinitesimally
small (compared to L), but the inverse relation between k and equilibrium length still
holds. (If you want, you can think of the equilibrium length as a measure of the total
number of spring atoms that remain in the unwrapped part.)

QL
53

w

Note that the change in angle of the contact point on the pole equals the change in angle
of the mass around the pole (which is §.) Consider a small interval of time during which
the unwrapped part of the spring stretches a small amount and moves through an angle
df. Then a length adf becomes wrapped on the pole. So the fractional decrease in the
equilibrium length of the unwrapped part is (to first order in df) equal to (adf)/xz. From
the above paragraph, the new spring constant is therefore

k adf
knew = 1_071;ﬂ ~ kold <1 + 7) . (46)

Therefore, dk = ka df/z. Dividing by dt gives

- kaw
k=—. 47
. (47)
The final equation we need is the one for energy conservation. At a given instant, consider
the sum of the kinetic energy of the mass, and the potential energy of the unwrapped part of
the spring. At a time dt later, a tiny bit of this energy will be stored in the newly-wrapped
little piece. Letting primes denote quantities at this later time, conservation of energy gives

Lo, 1 o 1, 1 ,p <1 2> <ad9>
- Z = _ Z — — . 4
2kac + 5 MY 2kac + 5 M + Qkx . (48)



The last term is (to lowest order in df) the energy stored in the newly-wrapped part, because
adf is its length. Using eq. (44) to write the v’s in terms of the z’s, this becomes

1
ka? = K¢ + Shwadp. (49)

In other words, —(1/2)kzadf = d(kz?). Dividing by dt gives

1 d(kz?)
—§kxaw = 7
= kz?+ 2kzi
k
- <ﬂ> 22 + 2kzd, (50)
T

where we have used eq. (47). Therefore,

3
T = — o (51)

We must now solve the two couple differential equations, egs. (47) and (51). Dividing the
latter by the former gives

i 3k
=i (52)
Integrating and exponentiating gives
KL4/3
= Ap (53)

where the numerator is obtained from the initial conditions, ¥ = K and x = L. Plugging
eq. (53) into eq. (51), and using w = /k/m , gives

30,K1/2L2/3
2/3; _
Integrating, and using the initial condition = = L, gives
5aK/2L2%/3
2%/3 = 53 _ <W t. (55)
So, finally,
+\3/5
o(t) = L (1 _ ?> , (56)
where

4L [m
T=—-—/=
5aV K (57)

is the time for which z(¢) = 0 and the mass hits the pole.
REMARKS:
(a) Note that the angular momentum of the mass around the center of the pole is not conserved
in this problem, because the force is not a central force.

(b) Integrating eq. (51) up to the point when the mass hit the pole gives —L = —(3/4)af. But af
is the total length wrapped around the pole, which we see is equal to 4L/3.



