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1. (a) From best to worst, the ordering of the strategies is (ii), (iii), (i). We can
demonstrate this by using conservation of momentum. There are no ex-
ternal horizontal forces on the sled and the snow, so the total momentum
of the sled plus the snow is constant in time.
Strategy (ii) therefore beats strategy (iii), because the snow in (ii) ends
up with no forward momentum, while the snow in (iii) continues to move
forward with the sled. The snow in (ii) therefore has less momentum
than the snow in (iii), so the sled in (ii) must have more momentum than
the sled in (iii).
Strategy (iii) beats strategy (i) for the following reason. When a snowflake
is brushed off the sled in strategy (i), it initially has the same forward
speed as the sled as they both sail across the frictionless ice. But when
the next snowflake hits the sled, the sled slows down. The brushed-off
snowflake therefore now has a larger forward speed than the sled. The
sled therefore moves at a speed that is slower than the speed of the center
of mass of the sled-plus-snowflake system. But this latter speed is simply
the speed of the sled in (iii).

(b) Swinging your arms does indeed help. Consider the angular momentum of
your body relative to your feet. The friction force at your feet provides no
torque relative to your feet, so the only external torque is the torque due
to gravity (which is what is making you fall over). However, for a small
enough period of time, this torque won’t angularly accelerate you much,
so your angular momentum with respect to your feet is approximately
constant.
Now assume that you start swinging your arms around with the orien-
tation such that your hands are moving forward at the lowest point and
backward at the highest point. The right-hand rule then says that your
arms have angular momentum which points to your right. But since your
angular momentum is approximately constant, there must now be some-
thing that has angular momentum pointing to your left. This something
is you. You will therefore rotate “forwards” relative to your feet. In
other words, you won’t fall backwards (assuming that you swing your
arms around fast enough).
Note that it is the change in the angular momentum of your arms that is
relevant. In other words, the swinging only helps you at the start. Once
your arms reach their maximum speed (which in practice happens very
quickly), the swinging doesn’t help you anymore. But hopefully you’ve
managed to get your center of mass back up above your feet by this time.

1



2. Let the total mass of the rope be m, and let a fraction f of it hang in the air.
Consider the right half of this section. Its weight, (f/2)mg, must be balanced
by the vertical component, T sin θ, of the tension at the point where it joins
the part of the rope touching the right platform. The tension at that point is
therefore T = (f/2)mg/ sin θ.

Now consider the part of the rope touching the right platform, which has mass
(1− f)m/2. The normal force from the platform is N = (1− f)(mg/2) cos θ,
so the maximal friction force also equals (1 − f)(mg/2) cos θ, because µ = 1.
This fiction force must balance the sum of the gravitational force component
along the plane, which is (1 − f)(mg/2) sin θ, plus the tension at the lower
end, which we found above. Therefore,

1
2
(1− f)mg cos θ =

1
2
(1− f)mg sin θ +

fmg

2 sin θ
. (1)

This gives

f =
F (θ)

1 + F (θ)
, where F (θ) ≡ cos θ sin θ − sin2 θ. (2)

This expression for f is a monotonically increasing function of F (θ), as you can
check. The maximal f is therefore obtained when F (θ) is as large as possible.
Using the double-angle formulas, we can rewrite F (θ) as

F (θ) =
1
2
(sin 2θ + cos 2θ − 1). (3)

The derivative of this is cos 2θ − sin 2θ, which equals zero when tan 2θ = 1.
Therefore,

θmax = 22.5◦. (4)

Eq. (3) then yields F (θmax) = (
√

2− 1)/2, and so eq. (2) gives

fmax =
√

2− 1√
2 + 1

= (
√

2− 1)2 = 3− 2
√

2 ≈ 0.172. (5)

3. Let’s consider point B first. This point is the center of a cube of side length d,
one of the faces of which is the detector. Since the radiation from the particle
is isotropic, 1/6 of it passes through each face of the cube. Therefore, 1/6 of
the particle’s radiation is detected by the square when the particle is at point
B.

Now consider point A. This point is the center of a cube of side length 2d.
The detector spans one quarter of one of these faces. Combining this fact with
the above reasoning tells us that (1/4)(1/6) = 1/24 of the particle’s radiation
is detected by the square when the particle is at point A.

Lastly, consider a point (call it D) very close to C. This case is a little tricker.
Point D is the center of a tiny cube which has as its bottom face a tiny square
at the corner of the detector. What areas on this cube correspond to radiation
hitting the detector? From the above reasoning, 1/6 of the particle’s radiation
passes through the bottom face. The other relevant areas on the cube are
shown as the lighter shaded regions below.
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C

D

essentially infinite

edge of detector

tiny cube

The top horizontal boundary of the lightly shaded region corresponds to the
two far edges of the detector, which are essentially infinitely far away. The two
diagonal boundaries correspond to the two edges of the detector that emanate
from point C.1 The lightly shaded region covers 3/8 of the area of the two
side faces, as can be seen by flattening out these faces, as shown.

The eight triangles shown in this figure have equal amounts of radiation hitting
them, so the shaded 3/8 of the area corresponds to 3/8 of the radiation passing
through the faces. These two faces represent 1/3 of the cube, so the total
fraction of the particle’s radiation that hits the detector is 1/6+ (3/8)(1/3) =
7/24.

4. We may as well consider the tetrahedron to be a planar circuit, as shown in
the diagram below (which looks just like the original 3D diagram). Let the
four loop currents be as shown.

V
0

cos ωt

I1

I4

I2 I3

1These diagonal boundaries are indeed straight lines, which can be seen by noting that each of
them is determined by the intersection of two planes, one of which is a face of the tiny cube, and
the other of which is the plane determined by an edge of the detector (emanating from point C)
and point D.
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Since ω = 1/
√

LC and R =
√

L/C, the impedances associated with the resis-
tors, inductors, and capacitors take the form,

ZR = R,

ZL = iωL = i

√
L

C
= iR,

ZC =
−i

ωC
= −i

√
L

C
= −iR. (6)

The four loop equations expressing the fact that the voltage drop around a
loop is zero are then

(I1 − I4)R + (I1 − I2)(iR) + (I1 − I3)(−iR) = 0,
I2(−iR) + (I2 − I3)R + (I2 − I1)(iR) = 0,
I3(iR) + (I3 − I1)(−iR) + (I3 − I2)R = 0,

(I4 − I1)R = V0. (7)

These simplify to

(I1 − I4) + i(I3 − I2) = 0,

(I2 − I3)− iI1 = 0,

(I3 − I2) + iI1 = 0,

(I4 − I1) = V0/R. (8)

The second and third equations are equivalent, so we in fact have only three
equations for our four unknown currents (more on this in the remark below).
Multiplying the second equation by i and adding it to the first gives 2I1−I4 =
0 =⇒ I1 = I4/2. Plugging this into the last equation then gives the amplitude
of total current through the circuit as

I4 =
2V0

R
. (9)

The effective impedance of the entire circuit is therefore R/2, so we see that
the upper five lines in the figure effectively act like a resistor of resistance R
in parallel with the bottom resistor R.

Remark: The above four equations determine the difference I2 − I3 to be iV0/R,
but they don’t determine I2 and I3 individually. These two currents can indeed take
on any values, as long as their difference is iV0/R. Any equal increase in their values
simply corresponds to dumping more current on the union of the top two loops (the
“2” and “3” loops), which consists of two inductors and two capacitors at resonance
(because ω = 1/

√
LC).

5. Assume that the particle slides off to the right. Let vx and vy be its horizontal
and vertical velocities, with rightward and downward taken to be positive,
respectively. Let Vx be the velocity of the hemisphere, with leftward taken to
be positive. Conservation of momentum gives

mvx = MVx =⇒ Vx =
(

m

M

)
vx. (10)
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Consider the moment when the particle is located at an angle θ down from the
top of the hemisphere. Locally, it is essentially on a plane inclined at angle θ,
so the three velocity components are related by

vy

vx + Vx
= tan θ =⇒ vy = tan θ

(
1 +

m

M

)
vx. (11)

To see why this is true, look at things in the frame of the hemisphere. In
that frame, the particle moves to the right at speed vx +Vx, and downward at
speed vy. Eq. (11) represents the constraint that the particle remains on the
hemisphere, which is inclined at an angle θ at the given location.

Let us now apply conservation of energy. In terms of θ, the particle has fallen
a distance R(1− cos θ), so conservation of energy gives

1
2
m(v2

x + v2
y) +

1
2
MV 2

x = mgR(1− cos θ). (12)

Using eqs. (10) and (11), we can solve for v2
x to obtain

v2
x =

2gR(1− cos θ)

(1 + r)
(
1 + (1 + r) tan2 θ

) , where r ≡ m

M
. (13)

This function of θ starts at zero for θ = 0 and increases as θ increases. It
then achieves a maximum value before heading back down to zero at θ = π/2.
However, vx cannot actually decrease, because there is no force available to
pull the particle to the left. So what happens is that vx initially increases
due to the non-zero normal force that exists while contact remains. But then
vx reaches its maximum, which corresponds to the normal force going to zero
and the particle losing contact with the hemisphere. The particle then sails
through the air with constant vx. Our goal, then, is to find the angle θ for
which the v2

x in eq. (13) is maximum. Setting the derivative equal to zero
gives

0 =
(
1 + (1 + r) tan2 θ

)
sin θ − (1− cos θ)(1 + r)

2 tan θ

cos2 θ

=⇒ 0 =
(
1 + (1 + r) tan2 θ

)
cos3 θ − 2(1 + r)(1− cos θ)

=⇒ 0 = cos3 θ + (1 + r)(cos θ − cos3 θ)− 2(1 + r)(1− cos θ)
=⇒ 0 = r cos3 θ − 3(1 + r) cos θ + 2(1 + r). (14)

This is the desired equation that determines θ. It is a cubic equation, so in
general it can’t be solved so easily for θ. But in the special case of r = 1, we
have

0 = cos3 θ − 6 cos θ + 4. (15)

By inspection, cos θ = 2 is an (unphysical) solution, so we find

(cos θ − 2)(cos2 θ + 2 cos θ − 2) = 0. (16)

The physical root of the quadratic equation is

cos θ =
√

3− 1 ≈ 0.732 =⇒ θ ≈ 42.9◦. (17)
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Alternate solution: In the reference frame of the hemisphere, the horizontal
speed of the particle vx + Vy = (1 + r)vx. The total speed in this frame equals
this horizontal speed divided by cos θ, so

v =
(1 + r)vx

cos θ
. (18)

The particle leaves the hemisphere when the normal force goes to zero. The
radial F = ma equation therefore gives

mg cos θ =
mv2

R
. (19)

You might be concerned that we have neglected the sideways fictitious force
in the accelerating frame of the hemisphere. However, the hemisphere is not
accelerating beginning at the moment when the particle loses contact, because
the normal force has gone to zero. Therefore, eq. (19) looks exactly like it
does for the familiar problem involving a fixed hemisphere; the difference in
the two problems is in the calculation of v.

Using eqs. (13) and (18) in eq. (19) gives

mg cos θ =
m(1 + r)2

R cos2 θ
· 2gR(1− cos θ)

(1 + r)
(
1 + (1 + r) tan2 θ

) . (20)

Simplifying this yields
(
1 + (1 + r) tan2 θ

)
cos3 θ = 2(1 + r)(1− cos θ), (21)

which is the same as the second line in eq. (14). The solution proceeds as
above.

Remark: Let’s look at a few special cases of the r ≡ m/M value. In the limit r → 0
(in other words, the hemisphere is essentially bolted down), eq. (14) gives

cos θ = 2/3 =⇒ θ ≈ 48.2◦, (22)

a result which may look familiar to you. In the limit r →∞, eq. (14) reduces to

0 = cos3 θ − 3 cos θ + 2 =⇒ 0 = (cos θ − 1)2(cos θ + 2). (23)

Therefore, θ = 0. In other words, the hemisphere immediately gets squeezed out very
fast to the left.

For other values of r, we can solve eq. (14) either by using the formula for the roots of
a cubic equation (very messy), or by simply doing things numerically. A few numerical
results are:

r cos θ θ

0 .667 48.2◦

1/2 .706 45.1◦

1 .732 42.9◦

2 .767 39.9◦

10 .858 30.9◦

100 .947 18.8◦

1000 .982 10.8◦

∞ 1 0◦
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6. Both cylinders in a given row move in the same manner, so we may simply
treat them as one cylinder with mass m = 2M . Let the forces that the boards
exert on the cylinders be labelled as shown. “F” is the force from the plank
below a given cylinder, and “G” is the force from the plank above it.

F

G

F

G

n

an
αn

n

n +1

n +1

Note that by Newton’s third law, we have Fn+1 = Gn, because the planks are
massless.

Our strategy will be to solve for the linear and angular accelerations of each
cylinder in terms of the accelerations of the cylinder below it. Since we want
to solve for two quantities, we will need to produce two equations relating
the accelerations of two successive cylinders. One equation will come from a
combination of F = ma, τ = Iα, and Newton’s third law. The other will come
from the nonslipping condition.

With the positive directions for a and α defined as in the figure, F = ma on
the nth cylinder gives

Fn −Gn = man, (24)

and τ = Iα on the nth cylinder gives

(Fn + Gn)R =
1
2
mR2αn =⇒ Fn + Gn =

1
2
mRαn (25)

Solving the previous two equations for Fn and Gn gives

Fn =
1
2

(
man +

1
2
mRαn

)
,

Gn =
1
2

(
−man +

1
2
mRαn

)
. (26)

But we know that Fn+1 = Gn. Therefore,

an+1 +
1
2
Rαn+1 = −an +

1
2
Rαn. (27)

We will now use the fact that the cylinders don’t slip with respect to the
boards. The acceleration of the board above the nth cylinder is an − Rαn.
But the acceleration of this same board, viewed as the board below the (n+1)st
cylinder, is an+1 + Rαn+1. Therefore,

an+1 + Rαn+1 = an −Rαn. (28)
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Eqs. (27) and (28) are a system of two equations in the two unknowns, an+1

and αn+1, in terms of an and αn. Solving for an+1 and αn+1 gives

an+1 = −3an + 2Rαn,

Rαn+1 = 4an − 3Rαn. (29)

We can write this in matrix form as
(

an+1

Rαn+1

)
=

(
−3 2

4 −3

) (
an

Rαn

)
. (30)

We therefore have
(

an

Rαn

)
=

(
−3 2

4 −3

)n−1 (
a1

Rα1

)
. (31)

Consider now the eigenvectors and eigenvalues of the above matrix. The eigen-
vectors are found via2

∣∣∣∣∣
−3− λ 2

4 −3− λ

∣∣∣∣∣ = 0 =⇒ λ± = −3± 2
√

2. (32)

The eigenvectors are then

V+ =

(
1√
2

)
, for λ+ = −3 + 2

√
2,

V− =

(
1

−√2

)
, for λ− = −3− 2

√
2. (33)

Note that |λ−| > 1, so λn− → ∞ as n → ∞. This means that if the initial
(a1, Rα1) vector has any component in the V− direction, then the (an, Rαn)
vectors will head to infinity. This violates conservation of energy. Therefore,
the (a1, Rα1) vector must be proportional to V+.3 That is, Rα1 =

√
2a1.

Combining this with the fact that the given acceleration, a, of the bottom
board equals a1 + Rα1, we obtain

a = a1 +
√

2a1 =⇒ a1 =
a√

2 + 1
= (

√
2− 1)a. (34)

Remark: Let us consider the general case where the cylinders have a moment of
inertia of the form I = βMR2. Using the above arguments, you can show that eq.
(30) becomes

(
an+1

Rαn+1

)
=

1
1− β

( −(1 + β) 2β
2 −(1 + β)

) (
an

Rαn

)
. (35)

2λ+ happens to be the negative of the fmax result found in Problem 2. An interesting fact, but
also a completely random one, I believe.

3This then means that the (an, Rαn) vectors head to zero as n → ∞, because |λ+| < 1. Also,
note that the accelerations change sign from one level to the next, because λ+ is negative.
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And you can show that the eigenvectors and eigenvalues are

V+ =
( √

β
1

)
, for λ+ =

√
β − 1√
β + 1

,

V− =
( √

β
−1

)
, for λ− =

√
β + 1√
β − 1

. (36)

As above, we cannot have the exponentially growing solution, so we must have only
the V+ solution. We therefore have Rα1 = a1/

√
β. Combining this with the fact that

the given acceleration, a, of the bottom board equals a1 + Rα1, we obtain

a = a1 +
a1√
β

=⇒ a1 =
( √

β

1 +
√

β

)
a. (37)

You can verify that all of these results agree with the β = 1/2 results obtained above.

Let’s now consider a few special cases of the

λ+ =
√

β − 1√
β + 1

(38)

eigenvalue, which gives the ratio of the accelerations in any level to the ones in the
next level down.

• If β = 0 (all the mass of a cylinder is located at the center), then we have
λ+ = −1. In other words, the accelerations have the same magnitudes but
different signs from one level to the next. The cylinders simply spin in place
while their centers remain fixed. The centers are indeed fixed, because a1 = 0,
from eq. (37).

• If β = 1 (all the mass of a cylinder is located on the rim), then we have λ+ = 0.
In other words, there is no motion above the first level. The lowest cylinder
basically rolls on the bottom side of the (stationary) plank right above it. Its
acceleration is a1 = a/2, from eq. (37).

• If β →∞ (the cylinders have long massive extensions that extend far out beyond
the rim), then we have λ+ = 1. In other words, all the levels have equal
accelerations. This fact, combined with the Rα1 = a1/

√
β ≈ 0 result, shows

that there is no rotational motion at any level, and the whole system simply
moves to the right as a rigid object with acceleration a1 = a, from eq. (37).
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