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Quantitative interpretation of X-ray reflectivity measurements from liquid surfaces requires methodical
accounting of the effects of diffuse scattering from thermal capillary roughness. In this paper we discuss how
this requires careful attention to the shape of the experimental resolution. These considerations, which are
essential for measurement of the intrinsic structure factor of a liquid surface, require knowledge of the liquid
surface tension. The paper closes with a brief comment on the most sensitive method for extraction of the
surface tension from measurement of the off-specular diffuse scattering.

1. Introduction

During Pierre G’s last visit to Harvard in Oct. of 2006, we
discussed much of the material of this article. As always, his
thoughts, even on subjects that were not themselves central to
his own research, proved to be of valuable assistance to my
own ideas, and I am happy to have the opportunity to contribute
to the memorial of a fine man, an exemplary scholar, and a
much-appreciated teacher.

An enlightening synopsis of X-ray reflectivity was presented
by Daillant and Gibaud.1 They observed that it was slightly more
than a century ago that Röntgen answered the question, “Can
X-rays be reflected like light”? with the remark that “no
noticeable regular reflection of the rays (X-ray) takes place from
any of the substances examined”.2 In that time when scientific
progress moved at a much slower pace than now, it took nearly
three decades before Compton drew attention to the theoretical
fact that X-ray reflectivity from most materials is to be
expected.3 It then took a few more years before experiments
confirmed Compton’s ideas.4-9 It is unfortunate that as a result
of two practical issues X-ray reflectivity remained relatively
dormant for the better part of the 20th century.

2. X-Ray Reflectivity

The first of these issues has to do with the relatively weak
interaction between X-rays and electrons. To a very good
approximation this can be parametrized by what is known as
the critical wavevector1,10

where F∞ is the electron density in the bulk, and r0 is the
classical radius of the electron. For a material such as water,
qc ≈ 0.021 Å-1. This can be compared to the scattering
wavevector for an X-ray of wavelength λ that is incident on
the surface at an angle R.

For a wavelength λ ≈ 1 Å, the critical angle at which qz(Rc)
≈ qc is on the order of Rc ≈ 0.1°. When R e Rc, the reflectivity
from a flat surface is nearly 100%; however, even for an ideal
flat surface (zero roughness) the predicted reflectivity falls
rapidly with increasing angle, and for R g 5Rc, the Fresnel
reflectivity for the ideal vacuum/material interface1,10

has fallen by more than 5 orders of magnitude when R ≈ 1°.
When this is combined with the relative weakness of the X-ray
sources that were available to early researchers, one can
appreciate why for most of the 20th century the scope of possible
X-ray reflectivity measurements was severely limited. The
breakthrough paper in which Parratt developed a mathematical
procedure by which the angular, R or qz(R), dependence of the
reflectivity can be related to the electron density profile along
the surface normal illustrates what was possible at that time.11

Unfortunately, as can be seen from Parratt’s paper, the relevant
measurements were limited to small values of qz and, cor-
respondingly, the resolution by which the profile was determined
was not much better than tens of angstroms.

Things were improved somewhat following the development
of the higher brilliance rotating anode X-ray sources that became
available in the 1970s; however, the major breakthroughs were
only achieved in the mid 1980s with the availability of even
higher brilliance synchrotron X-ray sources.1,12 The principal
goal of nearly all of the X-ray reflectivity studies is to determine
the average electron density profile along the surface normal

where Axy is some empirically defined surface area. For solid
surfaces, 〈F(z)〉 becomes independent of Axy as soon �Axy

becomes larger than a few times the atomic size. The different
situation for liquid surfaces will be discussed below. Neverthe-
less, for solid surfaces and for some cases of liquids, the surface
profile can be related to the measured reflectivity using a Born
approximation.10,13 The most useful result has been termed the
master formula,
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qc ) 4√πF∞r0 (1)

qz(R) ) (4π/λ)sin R (2)

RF(qz) ≈ |(qz - √qz
2 - qc

2)/(qz + √qz
2 - qc

2)|2 ≈ (qc/2qz)
4

(3)

〈F(z)〉 ≈ Axy
-1 ∫ Axy

d2rbxyF(rbxy, z) (4)
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where the surface structure factor is approximated by

Strictly speaking, the combination of eqs 5 and 6 is only valid
for qz g 4 or 5qc; however, unless the width of the surface
transion region over which 〈F(z))〉 grows from zero to ∼F∞ is
much greater than 2π/qc, these equations are quite accurate.1,12

Otherwise, the method developed by Parratt can be used to relate
R0(qz) to 〈F(z)〉 .11

The primary effect that limits the minimum length scale for
which features of 〈F(z)〉 can be determined is the maximum value
of qz for which R0(qz)can be measured. Although one obvious
limit occurs when R0(qz) falls to a level that the signal-to-noise
is immeasurably small, another practical limit occurs when the
specular reflectivity falls too far below the intensity of the off-
specular diffuse scattering. For some liquids the limiting diffuse
scattering is due to scattering from the bulk material below
the surface; however, other sources such as air scattering or
scattering from the windows of the chamber containing the
liquid can be significant. In this context it is important to
recognize that the fall-off with increasing qz is actually much
stronger than that of RF(qz). For example, for a surface such as
the water/vapor interface, which can be well-approximated as
having uniform density below a Gaussian rough interface such
as that sketched schematically in Figure 1, the average electron
density might have the form of an error function whose
derivative is Gaussian

On taking the Fourier transform, ΦT(qz) ) exp[ - σ0
2qz

2/2]
and

As presented here the factor exp[-qz
2σ0

2] is essentially a
Debye-Waller (DW) factor; however, a similar effect would
occur for a flat surface (i.e., zero roughness) if the transition
from vapor to bulk liquid had the same gradual increase in
electron density as the error function. For practical measure-
ments, σ0 is never less than 1 or 2 Å; however, it can be very
much larger.1,12 The net effect if, for example, σ0 ≈ 2 Å, is
that well before qz reaches 2 Å-1, R0(qz) will have fallen by
approximately 12 orders of magnitude, and this is close to the
limitofanybut themostbrilliant synchrotronX-rayreflectometers.

Although the forms of d〈F〉/dz and R0(qz) in eqs 7 and 8 are
reasonably good approximations to the properties of simple
liquids such as water and other relatively small molecules such
as molten alkanes14,15 for liquid crystals, liquid metals and
numerous other materials’ d〈F〉/dz exhibit a number of oscilla-
tions that induce a corresponding structure in ΦT(qz).10,16 The
more general expression for the reflectivity of solid surfaces is

where the effect of surface roughness, exp[-qz
2σ0

2] has been
explicitly introduced to separate it from the intrinsic structure

factor |Φ(qz)|2, which arises from the variation in the electron
density below the interface.

In principal, the only way to empirically distinguish whether
the qz dependence of R(qz) is due to surface roughness or due
to gradual nonrough growth of 〈F(z)〉 is to measure diffuse
scattering away from the specular condition. Unfortunately, for
many measurements there are other sources of diffuse scattering,
and the distinction can be ambiguous.

A very fortunate aspect of Fresnel reflectivity is that it is
restricted to the condition that the angle that the reflected beam
makes with the surface is the same as that of the incident beam
and that the scattering is within the plane of incidence. A
schematic representation of the kinematics of X-ray reflectivity
that is shown in Figure 2 illustrates the fact that this condition
for specular reflectivity can also be specified by stipulating that
the component of the wavevector transfer parallel qbxy ) 0 where

Formally, the differential cross section from a solid surface
has the form

where the delta-function corresponds to the specular reflection.
The S(qbxy) describes off-specular diffuse scattering from surface
roughness, and the DW factor, exp[-σ2qz

2], accounts for the

R0(qz) ≈ RF(qz)|Φ
T(qz)|

2 (5)

ΦT(qz) ) F∞
-1 ∫ dz[d〈F(z)〉 /dz]exp[iqzz] (6)

d〈F〉 /dz ) F∞(2πσ0
2)-1/2 exp[-z2/2σ0

2] (7)

R0(qz) ≈ (qc/2qz)
4exp[-qz

2σ0
2] (8)

R(qz) ≈ (qc/2qz)
4|Φ(qz)|

2exp[-qz
2σ0

2] (9)

Figure 1. (Left) Schematic illustration of the height fluctuations for a
surface section and (right) the electron density profile for an average
section.

Figure 2. (a) Kinematics of X-ray scattering from a flat surface (i.e.,
xy plane). For specular reflectivity, the Fresnel condition that the
reflection angle � is equal to the incident angle R and that the reflection
is in the plane of incidence, θ ) 0, can be described in terms of the
wave vector transfer qb ) qzˆZ ) (4π/λ)sin R̂z with qx ) qy ) 0. The
shaded rectangle illustrates the resolution-determining detector aperture
with widths ∆qperp transverse to the plane of incidence and ∆qz/cos �
in the plane. (b) The projection of the resolution onto the xy surface is
shown for θ ) 0. The projection is reduced along the plane of incidence
by sin �.

qbxy ) (2π/λ)[x̂sin θ + ŷ(cos R - cos θ cos �)] ) 0
(10)

dσ/d2qbxy ∼ |Φ(qz)|
2δ2(qbxy)exp[-σ2qz

2] + S(qbxy) (11)
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amount by which the reflectivity is reduced due to the
roughness-induced diffuse scattering represented by S(qbxy). For
practical synchrotron measurements, the X-ray beam incident
on the surface is essentially monochromatic and highly col-
limated. In this situation, for given values of R, �, and θ, the
ratio of the measured intensity to the incident intensity is
obtained by integrating dσ/d2qbxyover the experimental resolution
function. For practical purposes, a very good approximation to
the resolution function is is obtained by integration of the solid
angle ∆Ω ≈ (2∆qx)(2∆qz cos �)/k2, which is defined by the
detector slit

where Ares
qxy is the area in qbxy-space of the projection of the

detector resolution function on the surface (Figure 2b). If the
detector is held at the condition � ) R while the angle θ is
scanned, the specular signal with be a relatively well-defined
peak centered at θ ) 0 whose shape is essentially determined
by the convolution of the detector resolution with the δ-function
term in dσ/d2qbxzy. This is a powerful tool by which the specular
signal can be determined in the presence of relatively strong
nonspecular diffuse scattering. For example, Figure 3 shows
data in which the intensity is measured from the surface of liquid
Bi as a function of the out-of-plane angle θ.17 In the next section
we will discuss the difference between scattering from liquid
and solids surfaces; however, for the moment that difference is
not important. The data shown in Figure 3a was recorded at qz

) 1.6 Å-1, for which the diffuse scattering from the bulk liquid
structure factor is an order of magnitude more intense than the
specular signal at θ ) 0. The fact that the peak has the shape
of the slit-determined resolution function can be seen by
comparing it with the equivalent scan in Figure 3b at qz ) 1.0
Å-1, for which the bulk diffuse scattering is virtually zero. When
the background due to the bulk diffuse scattering is subtracted
from the data in Figure 3a and the amplitudes are scaled, as is
shown in Figure 3c, the two shapes can be seen to be
identical.18,19 The amplitude of the slit-determined resolution
shape in Figure 3a is the specular signal.

X-ray specular reflectivity from solid surfaces have been
extensively reviewed1,10,12 and will not be further discussed in

this article other than to reiterate that eq 9 is the result that is
obtained from integration of eq 11. On the other hand, the effect
of thermal capillary waves on liquid surfaces is to induce the
very different surface roughness that causes X-ray reflectivity
from liquids to be qualitatively different from that of solids.20

3. Effect of Capillary Fluctuations

In contrast to solids, the only two things that keep the surface
of bulk liquids flat are gravity and surface tension. Gravity, on
the one hand, is a relativity weak force, and its effect is only
manifest for surface waves with wavelengths on the order of a
gravity-determined scale that is millimeters or longer, that is,
|qbxy| e 10- 6 Å- 1. In view of the fact that most X-ray
reflectometers can not resolve such long wavelengths (i.e., small
qxy), the measured roughness of the liquid surface is dominated
by surface tension. The surprising effect is that, in contrast with
solid surfaces, for liquids, simple hydrodynamic theory predicts
that there is a range of several orders of magnitude, capillary
length scale (∼1 mm) > rxy > atomic scale (1 nm),21 for which
the height-height correlation function for the liquid grows
logarithmically with distance.22-24

The factor qmax ≈ π/ratom, which is introduced to ensure that
〈h(rbxy)h(0) - h(0)2〉 f 0 as rxy f ratom, the atomic radius, is
analogous to the phonon wavevector cutoff that is common to
the Debye treatment of the solids.25,26 It follows that, in place
of eq 11, the differential cross-section for scattering from the
liquid surface has the form20

where

So long as η < 2, this form for A0
-1dσ/d2qbxy has a cusp-

shaped peak at qbxy ) 0, and although it satisfies a sum rule

that is similar to one that one might expect for eq 9, it differs
from the δ-function form in that, if the integral is limited to a
resolution region |qxy| < qres < qmax, the value of the integral
depends on the size of the resolution, qres. As a practical matter,
the qxy cusp in eq 14 is sufficiently sharp that over the range of
the resolution; the variations in qz with �, or qy, are small enough
that the integral can treated as though |Φ(qz)| were constant.
Furthermore, for small values of η (i.e., ,1), the singularity at
the cusp is strong enough that the integration over the δ-function
and the 1/qxy

2 singularity are close enough that, for all practical
purposes, there is no real difference in the measurements of
the specular reflectivity from liquid and solid surfaces. On the
other hand, as η f 1 the differences become quite significant.

Figure 3. Transverse (i.e., 2θ) scans that illustrate the identification
of the specular reflection in the presence of nonspecular diffuse
scattering. The units for the vertical scales are arbitrary. The data is
from the surface of liquid Bi at T ) 513 K. The scans in panels a and
b were taken at qz ) 1.6 and 1.0 Å-1, respectively. The plot in panel
c illustrates that when the two scans are scaled the shapes of the specular
peaks are identical.17

I(R;�, θ)/I0 ) ∫ A
res
qxyd

2qbxy(dσ/d2qbxy) (12)

〈h( rbxy)h(0) - h(0)2〉 ≈ (kT/2πγ)ln(qmaxrxy) (13)

dσ
d2qbxy

≈ A0( qc

2qz
)4

|Φ(qz)|
2( qxy

qmax
)η( η

2πqxy
2 ) (14)

η ) (kBT/2πγ)qz
2 (15)

A0
-1 ∫ |qxy|<qmax

d2qbxy(dσ/d2qbxy) ) (qc/2qz)
4|Φ(qz)|

2 (16)
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4. Resolution Effect for Liquid Surfaces

The essential point that this paper addresses has to do with
the dependence of the measured reflectivity signal

on the size and shape of Ares
qxy when η > 1. The simplest heuristic

way in which the effect can be illustrated is to assume that Ares
qxy

defines a circle that includes all scattering for which |qbxy| < ∆qres.
The specular reflectivity predicted by integration using this
circular resolution function is

which can be expressed in the same form as for solids, that is,
eq 9, by writing the capillary roughness as

This is the form that was used to interpret the first X-ray
scattering experiments from the surface of water and other
simple liquids.14,27,28 Daillant et al. treated the short distance
cutoff differently; however, they used the same model for the
resolution with equivalent results.29 The important point il-
lustrated by this result is that the average surface roughness
decreases as the diameter of the resolution area increases,
approaching zero as ∆qres f qmax.28 The physics of this is the
same as for the DW factor, that is, the decrease in specular
reflectivity occurs because capillary waves scatter radiation away
from the specular condition; however, if the resolution is
sufficiently wide that the detector collects all of the diffuse
scattering, then the signal is not reduced. For liquids, this is
only relevant for η < 2. As will be seen below, it is only so
long as η < 2 that the integrated intensity has a maximum at
the specular condition, qbxy ) 0, which can be interpreted as
specular reflectivity. The important issue is to develop a practical
empirical procedure for extracting |Φ(qz)|2 from the intensity
that is measured at the specular condition.

Although the simplicity of eq 18 is compelling, the actual
projection of the resolution on to the liquid surface that is
illustrated in Figure 2b is rectangular rather than circular.
Assuming a rectangular detector slit (height × width ) h × w)
that is a distance L from the sample, when θ ) 0 the projection
Ares

qxy onto the surface is a rectangle,

and it is clear that even if h ≈ w, for typical reflection angles
sin � , 1, the resolution will generally be strongly asymmetric,
∆qy , ∆qx. Braslau et al.14 may have been the first to evaluate
eq 17 by treating ∆qx/∆qy ≈ 1/sin � for small � as infinite;
however, Sinha et al. did the more elegant step by making use
of this approximation and integrating eq 1724 to obtain the
1-dimensional cross section,

which they then analytically convoluted with a Gaussian
resolution function g(qy - qy

0). For specular reflectivity qy
0 ) 0;

however, they also obtained an analytic expression for the near-
specular diffuse intensity when � * R, or qy

0 ≈ (2π/λ)[cos R -
cos �]. Assuming that the integral over qx is some finite constant,
the immediate implication of this is that, although for dσ/d2qbxy

the peak at qbxy ) 0 persists as long as η < 2, the peak in (dσ1D/
qy) only persists so long as η < 1. The implication of this is
that for an infinitely wide slit, specular reflectivity can only be
defined for a liquid so long as η e 1 or qz

2 < (kBT/2πγ)- 1.
Although this is formally correct, the approximation of an
infinitely wide slit is not realistic.

The effect of the infinitely wide resolution on capillary effects
is most simply illustrated for a surface such as water in which
the structure factor has the form used in eq 8. The broken blue
line in Figure 4 (-·-, blue) displays the calculated R(qz)/RF(qz)
for water using Sinha’s function. The result diverges at the value
of qz, corresponding to η ) 1 (qz ≈ 1.045 Å-1). The divergence
arises from the fact that ∫-∞

+∞ dqx(qx
2 + qy

2)η/2-1 is only finite
when η < 1. The solid red line (s) demonstrates that for qz e
0.7 the circular resolution and the infinitely wide resolution give
essentially the same R(qz)/RF(qz). This might have been inferred
from the result in eq 18 for circular slit approximation since,
when

the dependence of R(qz) on ∆qres vanishes; however, the
numerical result suggests that the condition is not as strict as
implied by eq 22.

The effect of finite resolution for η > 1 is illustrated explicitly
by comparing the solid black line (s) in Figure 4, which
corresponds to a slit (h × w) ) 1 mm × 3 mm, with the broken
line (- - -), (h × w) ) 1 mm × 300 mm. Although the effect
of the coarser transverse resolution leads to a significantly
enhanced signal, the effect is considerably less than the
divergence predicted by the infinitely wide slit. The horizontal
resolution of 300 mm is also not physically realistic.

The real practical complication in measuring the reflectivity
from liquid surfaces is to extract a quantitative result for Φ(qz)
from the measured reflectivity, Although one can, in principle,
divide the measured R(qz) by the theoretically calculated integral
of the capillary scattering, there is the unavoidable experimental
problem of distinguishing between the signal that is reflected
from the surface and diffuse scattering from a variety of other

I(R;R, 0)/I0 ) R(qz) ≈ ∫ A
res
qxyd

2qbxy(dσ/d2qbxy) (17)

R(qz) ≈ (qc/2qz)
2|Φ(qz)|

2(∆qres/qmax)
η (18)

σcap
2 ) (kBT/2πγ)ln(qmax/∆qres) (19)

∆qy ) (2π/λ)(h/L)sin � cos �
∆qx ) (2π/λ)(w/L)cos � (20)

(dσ1D/qy) ≈ (qy
η-1)∫ -∞

+∞dqx(dσ/d2qbxy) (21)

Figure 4. Simulated examples of R/RF for different approximations
for the shape of the resolution determining detector slit. (s, black)
Projection of the resolution onto the liquid surface is circular. (- ·-,
blue) Analytic result for the convolution of a Gaussian resolution in
the plane of incidence with a slit that is infinitely wide transverse to
the plane of incidence. (- - - and s, black) Numerical integrations
over slits 300 mm wide and 3 mm wide.

η , 1/ln(qmax/∆qres) (22)
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sources. These other sources could include small angle scattering
from the atmosphere above the liquid surface (i.e., air scattering),
diffuse scattering from any windows of the chamber surrounding
the liquid, and diffuse scattering from the liquid below the
surface. In almost all practical cases, diffuse scattering from
the bulk liquid below the surface, as well as the background
diffuse scattering from other sources, are generally slowly
varying functions of qbxy. For systems such as solids for which
the specular signal is described by the δ(qbxy), the distinction
can be achieved relatively easily by simply measuring the
background scattering when � * R or θ * 0, that is, qy ) (2π/
λ)[cos R - cos �] ≈ (2π/λ)R(� - R) or qx ≈ (2π/λ)(cos �)θ,
and subtracting it from the scattering with � ) R and θ ) 0,
that is, qy ) 0. In principal, the same can be done for scattering
from a liquid surface; however, in view of the 1/qxy

2-η form, the
subtraction is not so straightforward.

The black lines in Figure 5 illustrate calculations of I(R;�,0)/
I0 from the surface of water with angles R ) 5, 6, 7, 8, 9, and
10.2° and λ ) 1.54Å. For these values, the lines correspond to
(qz,η) ) [(0.71, 0.46), (0.85, 0.67), (0.99, 0.91), (1.13, 1.18),
(1.28, 1.49), and (1.45, 1.91)]. The fact that the curve for η )
1.91 is nearly flat is a precursor to the fact that for η > 2 the
intensity at the specular condition is actually smaller than that
when |R - �| * 0. To emphasize the subtle distinction between
the δ-function in eq 11 and the capillary-induced cusp in eq
14, the calculations were done for a relatively narrow horizontal

detector slit (h × w) ) (1 mm × 0.3 mm). As R increases, ∆qy

increases proportionally and the central peak broadens; however,
the more striking behavior is that as η approaches 2 the peak
becomes less and less well-defined and would become increasing
difficult to measure as η approaches 2. In particular, note that
this calculation does not include nonsurface background scat-
tering that would be present in nearly all real experiments. Thus,
for example, although for this calculation the ratio of the
intensity at the tail position of qy ) -0.01 Å-1 to the peak is
∼0.044 for R ) 8° (η ≈ 1.18), when nonsurface sources of
diffuse scattering are present the actual value could be consider-
ably smaller. On the other hand, the fact that the qxy ) 0 cusp
from surface diffuse scattering can be observed when R ) 8°
is illustrated by the red curves that display the calculated
difference between the integral when the detector is in the plane
of incidence, θ ) 0, and when it is shifted by the horizontal
resolution, θ ) (0.3 mm/600 mm)(180°/π) ≈ 0.03°,

For example, at R ) 8°, the calculated ratio of the peak
intensity, ∆I(8°;8°,0.03°) to the diffuse intensity in the tail when
R - � ≈ 1°, corresponding to qxy ) 0.01 Å, is ∆I(8°;8°,0.03°)/
∆I(8°;8.1°,0.03°) > 2500, or nearly 2 orders of magnitude larger
than the result when the θ ) 0.03° is not subtracted. Assuming
that the intensity of the nonsurface, or background diffuse
scattering, at θ ≈ 0.03° is equal to that at θ ) 0, these red
curves should correspond to the empirically determined differ-
ence between the surface signals that are measured at θ ) 0
and 0.03°.

The implication of the above is to suggest that in the range
of 1 < η e 2 the surface structure factor |Φ(qz)|2 can generally
only be determined by measuring the difference

The choice of (1/2)[I(R;R, +∆θ) + I(R;R, -∆θ)] for the
background, rather than just I(R;R, (∆θ) is simply to ensure
against any unanticipated empirical (θ asymmetry. In any event,
with the background subtracted away the value of |Φ(qz)|2 can
be obtained by dividing M(qz) by the numerically integrated
value of the capillary prediction for the difference when |Φ(qz)|
) 1.

The relatively small width of 0.3 mm for the horizontal
detector slit in the previous example was chosen to emphasize
the visibility of the singular cusp at qxy ) 0. In practice, the
horizontal width can not be smaller than the width of the incident
beam. The unfortunate fact is that the choice of a narrow incident
beam generally requires some sacrifice in intensity. Furthermore,
the horizontal angular resolution of 0.03° ≈ 0.5 mrad is close
to what is often the practical resolution arising from either beam
divergence or sample curvature. To avoid both the intensity loss
and the complication associated with measuring the details of
the shape of the incident beam, measurements are usually carried
out with a somewhat larger horizontal width. The effect of
the increased horizontal resolution can be seen by comparing
the reduced visibility of the qxy ) 0 cusps for the calculations
displayed in Figure 6, which were done with a 3.0 mm wide
horizontal slit with the curves in Figure 5, for which the
horizontal slit was only 0.3 mm. The cusp that remained
visible up to values of η approaching 2 for the higher

Figure 5. Integrals of the 1/qxy
2-η form of dσ/d2qbxy over a slit that is (h

× w) ) (1 mm × 0.3 mm) and 600 mm from the sample. The black
lines illustrate I(R;�,0), and the red lines indicate background-subtracted
values I(R;�,0) - I(R;�,0.03°). From top to bottom, the value of η )
0.46, 0.67, 0.90, 1.18, 1.49, and 1.91.

Figure 6. Integrals of the 1/qxy
2-η form of dσ/d2qbxy over a slit that is 10

times wider than the slit used for Figure 5, (h × w) ) (1 mm × 3.0
mm) and 600 mm from the sample. The black lines illustrate I(R;�,0),
and the red lines indicate background-subtracted values I(R;�,0) -
I(R;�,0.3°). From top to bottom, η ) 0.46, 0.67, 0.90, 1.18, and 1.49.

∆I(R;�, 0.03°) ) I(R;�, 0) - I(R;�, 0.03°) (23)

M(qz) ≡ I(R;R, 0) - 1
2

[I(R;R,+∆θ) + I(R;R,-∆θ)]

(24)
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resolution (Figure 5) have nearly disappeared by η ≈ 1 for
the coarser resolution curves in Figure 6.

The calculated effect on R(qz)/RF(qz) with background
subtraction for water is illustrated in Figure 7 for two sets of
slits (h × w) ) (1 mm × 3 mm) with black lines and (1 mm ×
0.3 mm) with red lines that more-or-less span typical reflectivity
measurements. The solid lines indicate calculated integrals over
the central portions of diffuse scattering profiles like those shown
in Figure 5 when background is not subtracted. The broken lines
illustrate the calculation with background subtractions corre-
sponding to eq 24. The backgrounds are subtracted at 0.3° for
the 3 mm wide slits and at 0.03° for the 0.3 mm wide slits. As
can be seen for qz e 0.75 the effects of both slit width and
background subtraction are relatively negligible. This is es-
sentially consistent with the diffuse line shapes that were
illustrated above. For diffuse scattering at small values of qz,
the off-specular signal falls by roughly an order of magnitude
relative to peak at relatively small values of qy, and the primary
contributions to the specular integration are achieved at cor-
respondingly small values of qy. On the other hand, as qz f
1.45 Å- 1, corresponding to R ≈ 10.45 or η ≈ 2, the 1/qxy

2-η

form evolves from a peak at qbxy ) 0 to a minimum relative to
larger |qbxy|, and there should no longer be anything that can truly
be identified as specular reflectivity. The broken lines, which
corresponds to the background-subtracted signals do, in fact,
vanish as η f 2; however, the solid lines continue smoothly
past η ) 2. The point being made is that unless background
subtraction is done there is no real way to ascertain whether or
not the diffuse intensity described by the solid line originates
in surface scattering. Furthermore, background subtraction is
only viable so long as η < 2. Although the signals at larger
values of qz are generally greater for larger slits, so long as
background subtraction is scaled along with the resolution, the
effect of background subtraction is not terribly sensitive to the
width of the slit.

As was mentioned above, the primary goal for all reflectivity
measurements is to determine the surface stucture factor Φ(qz).
The solid points and the blue broken line in Figure 8 illustrate
measurements and the calculated ratio of R(qz)/RF(qz) for the
surface of liquid Sn as was measured by Shpykro et al.30 The
heavy black line illustrates the equivalent result after dividing
the blue curve by the calculated thermal capillary effects. The
published expression for Φ(qz) and the corresponding density
profile, F∞

-1(d〈F(z)〉/dz) are obtained by numerically fitting a
model to the heavy black line. The red curve illustrates the ratio
of R(qz)/RF(qz) that would have been obtained if the vertical
slit was 1/10 of the value that was used in the experiment. In
principle, the result of dividing the red curve by the calculated

thermal capillary effects for this resolution would obtain the
same heavy black line, and consequently the same Φ(qz) and
F∞
-1(d〈F(z)〉/dz). The point is that the correct final result is only

obtained if the transformation from data to solid line is done
using the same resolution function that was used in the
measurement. Furthermore, the transformation depends on both
the temperature and the surface tension of the liquid.

The final point that needs to be discussed is the practical
determination of the value of η. In principal, the value of η can
be determined by the shape of the tails of the curves of the
diffuse intensity versus �, or qz, as shown in Figures 5 and 6.
On the other hand, a much more sensitive measure of the value
of η is the ratio of the amplitude of the central peak to the
amplitude of the tails. This is illustrated by the calculated curves
in Figure 9. The solid black line illustrates the integral I(R )
3°;�,θ ) 0) of eq 12 for the water surface tension of 72 mN/m
with detector slits of (h × w) ) (1 mm × 3.0 mm)(black) and
(1 mm × 0.3 mm)(red) that are 600 mm from the sample. This
corresponds to qz ≈ 0.43 Å-1 and η ≈ 0.16. For these values,
the dσ/d2qbxy ∼ qxy

-1.84. The red and blue curves were calculated
with surface tensions of 100 mN/m for which η ≈ 0.12 (2 - η
≈ 1.88) and 60 mN/m for which η ≈ 0.19 (2 - η ≈ 1.81).
Although the tails of all three curves are virtually identical, the
peak heights are significantly different. Although the ratio of

Figure 7. Calculated values of integrals of the 1/qxy
2-η form of dσ/

d2qbxy for water using a detector slitd (h × w) ) (1 mm × 3.0 mm)(black)
and (1 mm × 0.3 mm)(red) and 600 mm from the sample. The solid
line corresponds to the integral at the specular condition, � ) R and θ
) 0, and the broken line is the background-subtracted result.

Figure 8. The dark points indicate measured values of R(qz)/RF(qz)
for liquid Sn.30 The broken blue line indicates a slight revision of the
published fit to the Sn data. The broken red line indicates a simulated
form for R(qz)/RF(qz) using a vertical slit that is a factor of 10 smaller
than was used in the measurement. The heavy solid line indicates the
result when either of these forms of R(qz)/RF(qz) is divided by the
theoretical capillary integrals that are discussed in the text. For both
cases the ∆θ shift for the background subtraction was matched to the
horizontal resolution.

Figure 9. Calculated values of integrals of the 1/qxy
2-η form of dσ/

d2qbxyfor water (solid black line) with a surface tension of 72 mN/m
and models using 100 mN/m (red) and 60 mN/m (blue). The detector
slits are (h × w) ) (1 mm × 3.0 mm)(black) and (1 mm × 0.3 mm)(red)
and are 600 mm from the sample.
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the intensity of the central peak to that of the tails varies with
the area of the resolution function, for any specific resolution
the ratio is the most sensitive measure of η.

5. Summary

One objective of this article has been to demonstrate the basic
difference between X-ray reflectivity from solid flat surfaces
and from capillary roughened liquid surfaces. The principal point
has been to illustrate the consequences of the fact that for a
rigid flat surface the Fresnel reflection, corresponding to a
differential cross section of the form δ2(qbxy), is qualitatively
different from the form for a liquid. Although gravitational
effects cut off the 1/qxy

2-η cusp at qbxy ) 0 before it can become
a true singularity, the length scale at which this occurs is not
usually resolvable by X-rays, and the angular dependence of
the diffuse scattering can be treated as a singular cusp. When
gravity is neglected there is no true specularly reflected signal.
Nevertheless, scattering measurements similar to specular re-
flectivity that are made at small angles from liquid surfaces are
virtually indistinguishable from those of solids. On the other
hand, with increasing angles of incidence the 1/qxy

2-η algebraic
singularity becomes weaker (eventually vanishing when η g
2), and determination of the surface reflectivity requires
thoughtful interpretation of the diffuse scattering.

Although most of the above illustrative calculations were done
for water, when the results are viewed as a function of η they
apply to virtually all liquids. For example, the surface tension
of liquid gallium is about 10 times that of water implying that
for gallium the η ) 2 limit is only reached for qz ≈ 4.5 Å-1.
On the other hand, the surface tension at the interface between
a hydrocarbon and fluorocarbon can be an order of magnitude
less than that of water, implying that the η ) 2 condition limits
the specular reflectivity of e0.45 Å-1.31 Although the idealized
criteria for optimizing measurement of the 1/qxy

2-η singularity is
to use the highest possible resolution (i.e., the smallest possible
values of {∆qx,∆qy}), this ideal requirement must be balanced
against both the cost of higher resolution in reducing the
intensity and the complication in accounting for the shape of
the incident beam.

The paper also addressed the issue of how the capillary
roughness affects measurement of the structure factor for
systems in which the structure factor Φ(qz) defined in eq 6 is
more complex than the simple Gaussian form of eqs 7 and 8.
In some sense, the surface structure of nematic liquid crystals
might be considered the prototypical example.13,32 As these
systems are cooled toward the smectic phase, the surface induces
smectic order parallel to the surface with a layer spacing dlayer.
The resultant X-ray reflectivity exhibits a temperature-dependent
interference peak at qz ) 2π/dlayer. In principal, the amplitude
of this interference peak should be reduced by the same capillary
fluctuations as govern the reflectivity from water that was
illustrated above. On the other hand, the smectic layering has
an intrinsic temperature dependence, and there have not been
any studies that attempted to separate the capillary effect from
the intrinsic. Given this situation, the surface structure of liquid
metals are better examples. As explained by Rice,33 the
electronic properties of the liquid metal induce atomic layering
that is similar to the liquid crystal surface order, except the metal
surface induced order does not exhibit an intrinsic temperature
dependence. On the other hand, as was first shown for liquid
gallium, the measured reflectivities have a significant capillary
induced temperature dependence that must be taken into account
in order to extract the intrinsic structure from the reflec-
tivity.25,30,34-43 The procedure for doing this was discussed in
relation to eq 14.

Finally, it is shown that the most sensitive measure of the
value of η, and thus of the surface tension, is the ratio of the
intensity at the specular condition to that of the intensity of the
tails of the diffuse scattering. An accurate measure of η requires
accurate integrations of the scattering over the experimental
resolution.
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