Atomic Layering Structure at the Surface of Liquid Sn

Oleg Shpyrko1, Alexey Grigoriev1, Christoph Steimer1, Peter Pershan1, Ben Ocko2, Moshe Deutsch3, Binhua Lin4, Mati Meron4, Tim Graber4, Jeff Gebhardt4
1Department of Physics, Harvard University, Cambridge, MA; 2Brookhaven National Lab, Upton, NY; 3Bar-Ilan University, Israel, 4Argonne National Lab, Argonne, IL

Abstract

- We report X-ray measurements of liquid Sn which confirm the existence of atomic layering at the surface.
- Deviation of the surface structure factor for liquid Sn from the standard layering model behavior (Ga, In, K, etc) can be explained by presence of high-density layer at the surface.
- The high-density layer is an intrinsic property of Sn, rather than a result of contamination or oxidation at the surface.

Introduction

- Background
 Atomic surface layering has been theoretically predicted to occur in liquid metals by S. Rice in 1974, and has been confirmed experimentally 20 years later in a number of liquid metals such as Hg, Ga, In, K and several binary liquid metal alloys. On the other hand studies by Chacon (2001) conclude that under the right conditions non-metallic liquids could also exhibit layering.

Our results:
- We have studied the atomic layering structure of the surface of liquid Sn by the methods of X-ray reflectivity and diffuse reflectivity.
- By deconvolving the capillary wave contributions from the reflectivity measurements we were able to obtain the intrinsic surface structure factor for liquid Sn.
- The surface structure factor exhibits a peak at qz ≈ 2.3 Å−1, indicating the presence of surface-induced layering in liquid Sn, similar to that found for other metallic liquids.
- The surface structure factor deviates at low qz from a standard layering model. The deviation indicates the presence of a high-density layer at the surface.

Proof:
- The high-density layer at the surface is an intrinsic property of the liquid Sn and is not due to some Gibbs monolayer (i.e. Bi, Pb, etc) at the surface!

Deviation of the surface structure factor for liquid Sn from the expected change if contaminated.

Surface induced atomic layering is confirmed for liquid Sn. The reflectivity curve shows a fundamentally different layering from the standard layering structure found for other metals (Ga, In, K, etc).

- Energy-dispersive x-ray fluorescence and resonance x-ray reflectivity data confirm the absence of any foreign chemical species or contaminants at the surface, down to sub-monolayer quantities. This suggests that the higher-density layer is an intrinsic feature of liquid Sn.
- The fitting indicates that the low-angle reflectivity feature is consistent with an uppermost atomic layer of Sn having a 10% shorter layer spacing than the bulk’s first coordination sphere radius, resulting in a higher-than-average density at the surface.

Acknowledgements

This work has been performed at ChemMAT-CARS sector of Advanced Photon Source, Argonne National Lab and is supported by DOE grants DE-FG02-88-ER45379 and DE-AC02-98CH10886. Use of the APS was supported by the DOE under contract W-31-109-ENG-38

Presented by Oleg Shpyrko at the APS Users Meeting, Argonne National Laboratory, May 2004